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SELF-CONSISTENT VLASOV DESCRIPTION OF THE

FREE ELECTRON LASER INSTABILITY

Ronald C. Davidson
Plasma Fusion Center

Massachusetts Institute of Technology

Cambridge, Mass., 02139

Han S. Uhm
Naval Surface Weapons Center

White Oak, Silver Spring, Md., 20910

A self-consistent description of the free electron laser instability

is developed for a relativistic electron beam with uniform density propa-
gating through a helical wiggler field BO = -B cos kozex sin kozey. The

analysis is carried out for the class of solutions to the Vlasov-Maxwell

equations described by fb(z,p,t) = no6(Px)6(Py)G(z,pz,t) where Px and Py

are the exact canonical momenta invariants perpendicular to the beam pro-

pagation direction. The linearized Vlasov-Maxwell equations lead to an

exact matrix dispersion relation which is valid for perturbations about

general beam equilibrium GO(pz) and includes coupling to arbitrary harmonic

number (n) of the fundamental wiggler wavenumber kO . No a priori restric-

tion is made to low beam density (as measured by wp/C2 k) or smal. wiggler

amplitude (as measured by wc/ck0 - eB/ymc2 k0). Moreover, no assumption

is made that any off-diagonal elements in the matrix dispersion relation are

negligibly small. A detailed numerical analysis of the exact dispersion

relation is presented for the case of a cold electron beam described by

GO(pz) - 6 (Pz - Po)" It is shown that the instability bandwidth increases

rapidly with increasing wiggler amplitude (c/ck O . Moreover, except for

very modest values of wiggler amplitude, it is shown that the growth rate

calculated from an approximate version of the dispersion relation can be

in substantial error for large values of (k + nko)/ko. Preliminary

estimates of the influence of beam thermal effects are also presented.
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1. INTRODUCTION

In recent years there have been several theoretical and exper-

imental investigations of the free electron laser which generates

coherent electromagnetic radiation using an intense relativistic electron

beam as an energy source. With few exceptions, theoretical studies of the

free electron laser instability are based on highly simplified models

which often neglect beam kinetic effects and coupling to higher harmonics
, 0-u- 0

of the fundamental wiggler wavenumber ioJ, or make use of very idealized

approximations in analyzing the matrix dispersion relation. The purpose

of the present paper is to develop a fully self-consistent description of

the free electron laser instability based on the Vlasov-Maxwell equations.

The final matrix dispersion relation kq-*St- includes all beam kinetic

effects and coupling to arbitrary harmonic number (n) of the fundamental

wiggler wavenumberk. Moreover, the final matrix dispersion relation

E 4 makes no a priori assumption that any off-diagonal elements are

negligibly small.

The present analysis assumes a relativistic electron beam with uniform

cross-section propagating in the z-direction through a helical wiggler field

described by [Eq. (2)]

B0  - -Bcos k0 zx - B sin koz y

where B - const. is the field amplitude and X0 - 271/k0 is the wiggler

wavelength. Moreover, we consider the class of exact solutions to the

Vlasov-Maxwell equations described by [Eq. (12)] 5

fbz ) n06(Px)6(Py)G(z,pz,t),

-.
k ......
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where no = const., Px and Py are the exact canonical momenta invariants

[Eqs. (6) and (7)], and spatial variations are assumed to be one-dimensional.

A detailed analysis of the linearized Vlasov-Maxwell equations (Secs. 2.B

and 3.A) leads to the matrix dispersion relation [Eq. (45)]

*2

L T T i r T T
D (w) DT  (w) DT _(W) 2 [D T(w) + D (W)]n n+l n12 c2k2 Ln+l( _-l(

X {[X(l)(W)]2 - L~w[xw 2 2)()}r

where w = eB/ymc is the relativistic cyclotron frequency, w2 = 4n mc p/m
is the relativistic plasma frequency-squared, -c2 is the characteristic

electron energy, a3 is a constant of order unity [Eq.(43)], the suscepti-

bilities X (l w) and X(2)(w) are defined in Eqs. (37) and (38), D L(w) is the

longitudinal (electrostatic) dielectric function defined in Eq. (39), and

D T+(w) are the transverse (electromagnetic) dielectric functions defined
n+l

in Eqs. (40) and (41). The striking feature of Eq. (45) is that the dis-

persion relation is valid for arbitrary harmonic number n. (No a priori

assumption has been made that n - +1). Moreover, the effective wavenumber

variables that occur in the various factors in Eq. (45) are k + nk0,

k + (n+l)k0 and k + (n-1)k0 ' In addition, Eq. (45) describes stability

behavior for perturbations about general beam equilibrium distribution

Go(Pz), and no a priori restriction has been made to low beam density (as

measured by wp/c2 k0) or small wiggler amplitude (as measured by wc/ck0 ).

Apart from the linearization assumption, no approximations have been made

in deriving Eq. (45). For example, we have not assumed a priori that

D L(w) % 0 and therefore neglected the corresponding term on the right-hand
n
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side of Eq. (45). The latter point is very important. In Secs. 3.B and

3.C we present a detailed numerical analysis of the exact dispersion

relation [Eq. (45)] for the case of a cold electron beam described by

G o(Pz ) f 
6 (pz - pO). The exact stability results are then compared with

the approximate results obtained from Eq. (45) by assuming at the outset

that D (w) % 0 and D T (w) % 0, which gives the reference dispersion
n hn-

relation [Eq. (46)]

D L(w)D ( 1 ( I)
n n-1 2 c2k2  n

0

For sufficiently large wiggler amplitude (as measured by Wc/ck0 ), it

is shown in Sec. 3.C that the growth rate w. = Imw obtained from the1

reference dispersion relation [Eq.(46)] can be in substantial error

for large values of (k + nk0)/ko.

For completeness, and to orient the reader, it is useful to summarize

here the interaction wavenumbers and frequencies pertinent to the free
9,10

electron laser instability. We consider a cold electron beam (Secs.

3.B and 3.C) and look for simultaneous solutions to DL (w) = 0 andn

D _(M) - 0. Shown in Fig. 1 is a first-ouadrant plot (w > 0 and
n d

k + nk > 0) of
0

W (k + nk0 )Vb +wp/

and

W [c2 (k + nk k) 2 + 2 ) 1 /2

0 0 p

versus k + nk Note that there are generally four intersection points.

Solving the above equations simultaneously, the upshifted wavenumbers

maw
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(intersections with k + nk0 > k ) are given by

(k+nk ) = 2 k0  + .1 + 2---1 I y b --- ko

u 0 cko ± - ck

and the downshifted wavenumbers (intersections with k+nk0 < ko) are given by

(k+=k i k+ ----2 ck b 'ab & -- ko

where y = (1 - 8)-1/2 and 8b = Vb/c. In the limit of low beam density

with 2 /C 2k2 << 1, Y 2a, the intersection wavenumbers can be approximated by

(k+nk (l+ab)y 2k k

and

(k+nko)± = (I-6b)y 2 k 0 = ko/(l+8 b).

For sufficiently large y, the upshifted wavenumber (k+nko)t = (1+ b)y2ko

can correspond to very short wavelengths and is the intersection region

of interest for the free electron laser instability. 9 '10 Depending on the

value of beam density (Wp/C k2) and wiggler amplitude (Wc/cko), however,

tit is important to note that the dispersion relation (45) may also support

instability in the long wavelength intersection region corresponding to

(k + A (See Sec. 3.C and Fig. 3).

0 d_
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2. THEORETICAL MODEL AND ASSUMPTIONS

A. General Theoretical Model

The present analysis assumes a relativistic electron beam with

uniform cross section propagating in the z-direction. The beam density

is assumed to be sufficiently small that equilibrium space charge

effects are negligibly small with

0
E'= . (i)

Moreover, the electron beam propagates through a helical wiggler

magnetic field described by 1,2,5

O=-Acosk Zx_Bsink0zy , (2)

where B=const. is the field amplitude, X.=2n/k 0 is the wavelength,

and and y are unit Cartesian vectors in the plane perpendicular

to the propagation direction. The vector potential associated

with Eq. (2) is given by

60 =(f/k 0)coskozkx+(i/ko)sinkoZy . (3)

It is also assumed that the beam density and current are sufficiently

small that the equilibrium self magnetic field can be neglected in

comparison with 0. 11

We consider perturbations in which the spatial variations are one-

dimensional in nature with /a x=O-/a y, and @ az generally non-zero.

Introducing the perturbed potentials,

60(z,t)

and

6 , t) -6Ax (z, t)+ 46A (Zt)yx Y
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the electromagnetic field perturbations 6SE and 6B can be expressed in

the Coulomb gauge as

(z( tt)e 6 L(z,t)z)-Ii. 6A (z,t)k , (4)
az Cz a t x cU C t y y

and

5- -6A (z,t)e + L-6A (z , )k (5)
az y kX 5z

where 6k=-V60-(l/c)(3/at)6k and 6k=Vx6 . In the present geometry,

there are two exact single-particle invariants in the combined

equilibrium and perturbed field configuration. These are the canonical

momenta, P xand P y, transverse to the beam propagation direction, i.e.,

=- -A (z) -- 6A (z,t)=const.,(6

P =p - - A 0(z)- - 6A (z,t)=const., (7)
yyc y c y

where AO(z)-(B/k )cosk z and A0(z)=(Bk )sink z LEq. (3)1, andp
x 00 y 0 0

and p are the transverse mechanical momenta.

The potential perturbations 60(z,t), 6A x(z,t) and 6A y(z,t) are

determined self-consistently from the Maxwell equations

2 2a - 6 ire d3(8
(2 at 2 a2) XA c d P vx(fbfb) 8

/1 2 a2 4n d w 3 0 ~ (1)
I-- -- fA--b- b pv

where f 0(z,z) is the equilibrium (a/3t=O) beam distribution, andfbz,)

in general solves the nonlinear Vlasov equation

S + v~ - -e(6E+ 1%(to+A.) . j _ b (Z,k,t)=O .(11)

In Eqs. (8)-(11), the particle velocity and momentum are related by



mv-/(l+ 2 /M2c2) 1 /2 . Moreover, m is the electron rest mass, -e is the

electron charge, and c is the speed of light in vacuo.

For present purposes, we examine the class of exact solutions to

Eq. (11) of the form5

fb(z,p,t)=n06(P )6(Py)G(z,pz t) (12)

where no=const., and P and P are the exact invariants defined in
x y

Eqs. (6) and (7). Note from Eq. (12) that the effective transverse

motion of the beam electrons is "cold". Substituting Eq. (12) into

Eq. (11) and making use of Eqs. (6) and (7), we find that Eq. (12)

solves Eq. (11) exactly provided G(z,pz t) evolves according to the one-

dimensional Vlasov equation

{8 +V '1- - H(z,t) ap G(zpzt)=O , (13)
at z aZ az ap z

where H is defined by

2
H(z,t)=yTmc -e6d(z,t) . (14)

In Eq. (14),

2 2 4 2 2 2 0 2 2 0 2 (15)
y c 2[m c +c p2z+e (AO+6Ax) +e (A y+6Ay) ]/2 (15)

is the particle energy for Px =O=P . Moreover, substituting Eq. (12)

into Eqs. (8)-(11), the equations describing the nonlinear evolution of

the potential perturbations can be expressed as

-3 = +6A 0C) d  A_ G-AO GO) (16)
c 2  t 2  z2  x mc2  y xO y

( a2 a 241026AY= -2 (A+6A )J z G-AJ -z Goj , (17)

-- 6fm-4wen0 ,dp.[G0] (18)
Bz
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where y Tmc2 is defined in Eq. (15), G0 (pz) is the equilibrium (/Dt =0)

beam distribution, G(z,pzt) solves the nonlinear Vlasov equation (13),

and

2 2 4 2 2 2 2 1/2
ymc =(m c +c p +e B/k0 ) , (19)

is the energy in the absence of perturbations (6A =0=6A ). In obtainingx y

Eq. (19) from Eq. (15), use has been made of (A ) 2+(A ) 2=B2 /k =const.
x y 0

[Eq. (3)].

Within the context of the present model, Eqs. (13) and (16)-(18)

describe the exact nonlinear evolution of the system for perturbations

about the general beam equilibrium GO(p ). In this regard, we note from

Eqs. (13) and (14) that the axial force F on an electron in the phasez

space (z,p z) is given by
2

Fz=- - H=- e 2 a [2AO6A +2A06A +(6A )2+(6A ) 2]+e (20)
3zaz x X y y X y z

That is, the effective ponderomotive potential is proportional to

0 0 2 2
2A 6A +2A 6A +(6A ) +(6A )

x X y y x y

B. Linearization Approximation

For purposes of the stability analysis, we now consider the

linearized version of Eqs. (13) and (16)-(18). In this regard, it is

useful to introduce the dimensionless potentials defined by

2- (21)

6A+- e Ai6A ) (22)(6 A x yy mc

0 0
A- exp(±ik0 z) (23)

ymc 0

2
In Eqs. (21)-(23), -ymc -const. denotes the characteristic mean energy

.. -.... .. * ' " ... .. . .
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of the electron beam, and

ei = (24)c mc (

is the relativistic cyclotron frequency associated with the wiggler

field amplitude B. Making use of Eqs. (21)-(24), the perturbed force

-16Fz [Eq. (20)] and inverse relativistic mass factor yT [Eq. (15)] can be

approximated by

6--yoc 2 [o, L 0 +exp(-ik0 z)6i]- a 6 ()
6Fzyc ck az [ep3k) (25

and -2 C

1_ = 1 - c [exp(ik 0z)6A_+exp(-ik0 z)6Al] , (26)-T -2 3 ck 0 00

m 2 . 2 4. 2 2. 2-2. 2 1/2
where ymc (m c +c pz +e B /k0) [Eq. (19)]. Substituting Eqs. (25)

and (26) into Eqs. (13) and (16)-(18), and combining Eqs. (16) and (17)

to give equations for 6A ±i6A , the linearized equations for 6G(z,pt),

6A+(z,t) and 60(z,t) can be expressed as

(27)
ymc c (epikz6a p-i~) a]- 6 -G 0 p)

R2 - ,dpz6G (28)
az c2 2

2 2 2 Y 0- Gd

c at zc

&c 6G 1 "c+ ck exp(ik {Z) 6d p z  2 ck [exp(ikoz)6A-+exp(-ik0z)6A+]

0 0z y 2c

x dp. GO (29)
3 0

........



11

2 d p

c a t 2  3z2  - c 2 -

(30)

+ N-exp(-ikZ) Jdp L --j <o o- [exp(ikz)6A+exp(-ik z)6A]y- ,.
- .0- -00 3

In Eqs. (28)-(30), _

47Tne2
2 0 = -- (31)P

is the relativistic plasma frequency-squared, and 65, 6A+ and c are

defined in Eqs. (21), (22), and (24). In the limit of zero wiggler

amplitude (c -*0), we note that Eqs. (27)-(30) give the usual

uncoupled electromagnetic and electrostatic dispersion relations for

perturbations about a one-dimensional relativistic plasma equilibrium.

i" .; ..... .. ......... ... ... ... ... ... .... .... ... ..... ..... .. . * -' .' '' ' - " ',... . %' i -- ....... ... ... -_, :-: 4



12

3. STABILITY PROPERTIES

A. General Dispersion Relation

For the equilibrium configuration considered here, the electrons
are constrained to move on surfaces with P0=p-(e/c)A 00=p -(e/c)A0=P0

2 2 4 22 ^2 2 1/2and ymc =(m c +c p2+B /k0) =const. This implies that the axial

momentum pz is a constant in the equilibrium field configuration.

Moreover, the corresponding electron 'trajectory that passes

through (z,p ) at time t'=t is given by
zP

pz'=z+-a (t'-t),
ym

(32)

Pz Pz'

where p /ym-v is the axial velocity.

Without loss of generality we expand the field perturbations

in Eqs. (27)-(30) according to

6*= nexp[i(k+nkO) z-iwt]
n

exp(ik0z)6A_=A _l exp[i(k+ k0)z-iwt] , (33)
n

exp(-ikoz)6- A+ A++exp[i(k+nko)z-iwt]

n

where X0 -2ir/k 0 is the periodicity length of the wiggler field. Here

we assume that k is real and Imw > 0, corresponding to temporal growth.

A completely parallel treatment can be developed for spatially growing

perturbations (Imk < 0) and real oscillation frequency w. Substituting

Eq. (33) into Eq. (27) and integrating along characteristics, we obtain

for the perturbed distribution function 6G(zp ,t)

.......
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6G=Ymc2 - I Zi(k+nkO)exp[i(k+nkoz
;pz n

x - (A- +A n (34)(2 ck-- y n- +l)-n

Stf

xfdt'expi(k+nk)v z(t'-t)-iwt']

Integrating with respect to t' in Eq. (34) with Imw > 0 gives

-2 aG (k+nk0 )
Pz nw -_(k+nko)v exp[i(k+nk0 )z-iwt]

(35)

C (An +A + 0

where vz=p /ym and ymc2= ( 2 c4+c2p2 +2 /k2)1 /2.

From Eqs. (28)-(30) for the field perturbations, it is evident

2 2-fthat integrals of the form W jdj 6G and w prfdp z 6G/y are required.

Therefore, comparing with Eq. (35), it is convenient to introduce the

effective susceptibilities x (j ) (w) defined by

(0) - 2 2 (k+nk0 )aG0 /ap z(36)Xn ()=Zmc w jdp z  w-(k+nk0)vz

(1) - 2 2f dp (k+nk0 )aG0 /3Pz

Xn  (p) ymc2u1pY Y w-(k+nk )vz

(2) - 2 2-2 dPz (k+nk0) 0/ (z
Xn  (w)=ymc W J---- -(k+nk 0 )vz  (38)

For future notational convenience we also introduce the longitudinal

and transverse dielectric functions defined by

DL u)=c 2 (k+nk0 )
2 +x( (0 ) , (39)

DT (W)=W 2-c 2[k+(n+l)k0]
2-alW , (40)

D T_(-)W2-c2[k+(n-l)ko]2-alW2 (41)

........ .......
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where

3fdp,

C 3 f dp G(p) (43)

for future reference. Note that the constants aand a are of order

unity whenever G0 is strongly peaked around y=y.-

We substitute Eqs. (33) and (35) into the field equations (28)-(30)

and make use of the definitions in Eqs. (36)-(43). After some straight-

forward algebra, we obtain the matrix equation relating A n+l, A 1 l, and 0

DT +I W~~ (C 2 (2)) , c ~2 (2) , (-
n+1 2 2 k2 3 pn 22 k2 3 p n ck 0  n l

c0  ck
-2 -2

1 w W+ 2 2 (2) W c (1) A (

k0  k0  0

W X (1)c D

ck 0n ,k 0 DLn

(44)

The condition for a nontrivial solution to Eq. (44) is that the determinant

of the matrix vanish. This gives the dispersion relation

^2

D LM)D T (w)D 1 (w-- c [DT ( DT Mn n+l n- 2w. 2j k [Dn1  n I+

X1X(1) M 2 _D L r~3 2 + (2) (1
n n pn

which determines the complex eigenfrequency w in terms of k+nk0, k0 9 W2

an 2 2 2
an C k0*

The striking feature of Eq. (45) is that it is valid for arbitrary

harmonic number n. (No a priori assumption has been made that n-±l.)

Moreover, the effective wavenumber variable k'-k-+nk 0occurs in every

factor in Eq. (45). In addition, Eq. (45) describes stability behavior



15

for general equilibrium distribution G0 (pz), and no a priori restriction

has been made to low beam density (as measured by w2 /c2k2) or small wiggler

amplitude (as measured by c/ck 0). Since Eq. (45) contains no approxima-

tions apart from the linearization approximation, we reter to Eq. (45)

as the full dispe-,sion relation (FDR).

In circumstances where the beam density is low and the wiggler amplitude

is very small, Eq. (45) supports solutions near D ()=0, D T ()=0
~1*n n+l

and DT  (w)-O. In this case, it is instructive to simplify Eq. (45)
n-I

near the simultaneous zeroes of DL (w)0 and DT_(T)_=0. (Here we assume

D T 00.) Equation (45) then reduces to the simplified approximate form
n+l

"2

L T 1 c (1) 2
D D ( [Xn M(46)
n n-i 2 2 k2 nc 0

In the subsequent analysis, we refer to Eq. (46) as the reference dis-

persion relation (RDR).

B. Dispersion Relation for a Cold Electron Beam

As a first application, we consider the dispersion relation (45)

for the case of a cold beam equilibrium described by

G (pz)u'6(p -p 0 ) , (47)

-2
where p0 is related to the mean energy 'yc by

-2 2 4 2 2 2-2,2,1/2
YMC(m c +c Pe B /k0 )  (48)

It it straightforward to show from Eqs. (47) and (48) that fdpzYnGO(pz)=;n

so that

Clf=i 3=1 , (49)

follows from Eqs. (42) and (43). Substituting Eq. (47) into Eqs. (36)-

(41), the effective susceptibilities and dielectric functions for a



16

cold electron beam can be expressed as

2 -2
(0) 2 2 w,/Y

xO(w)--c (k.nko) 2  p (50)n0 2'
[w-(k+nko)Vb]

2 [wab-c(k+nko)J
Xn () c(k+nk0) 2 (51)

[w-(k+nko)Vb]

2

X(2) (w)=c(k+nk0 )w [2 wb-c(k+nko)(l+ab)]
[w(k+nk 0b 2  (52)

L 2 __________(~c(knk) 1 [w-(k+nko)Vb] 2 j(3
DL( )c2(k+nk2 22 (n 0[l_(k+nk 0)V b]

D +(w)=w 2-c 2[k+(n+l)k0]2 -W , (54)

Dl (w)=w 2-c2 [k+(n-l)ko ] -W (55)

In Eqs. (50)-(55), Vb=PO/Ym is the beam velocity, and 8b is defined by

Bb=Vb/c. Substituting Eqs. (50)-(55) into Eq. (45) and carefully

ombining and simplifying terms on the right-hand side, the full dis-

ersion relation (FDR) for the free electron laser instability can be

e .pressed as

{([w-(k+nko)Vb]2-w2/ 2 2-c2 ((k+nk 0)-k0] 2-w}

2_2 p2_2
x{W -c f(k+nk0 )+k01 w}

^2=c 2 (w2_c 2 (k+nko) 2 c 2 k 2 1(6
= - 2- -2 w p -0 ]  ( 5

k k0

x([w-(k+nk0)Vb 2+2Vb(k+nko)[w-(k+nkO)Vb]

2 2/-2  2
-c (k+nk0 ) / p c

Note the exact cancellations that have occurred on the right-hand side of
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Eq. 56). Makig us of -2 b the full dispersion relation (FDR)

in Eq. (56) can be expressed in the equivalent form

{ r .2 _k ] 2 /-2 } 2 _ 2 
r ~ ~ 1 2 _ 2 .

fLw-(kfk 0V b p /Y LW c [f(~ 0 )-k0 1 ~W p

-{ _c 2[(k+nk )+k] -w 2_
0 0 p

-2 (57)Wc 2 2_2 _ )22 2W p[-c (k+nk.)ck0WP

X[22 022
xf c (k+nk0)-

Moreover, substituting Eqs. (50), (51), (53), and (54) into Eq. (46),

the reference dispersion relation (RDR), which is approximately valid

for low beam density and very low wiggler amplitude, can be expressed as

{[w-(k+nk 0)V b] 2_W 2 2  (2_c2 [(k+nk 0 )-k 0 1 
2-W 2

1 NO [b-C(k+nk )] 2(8
1 c 4 b 0______

2 2 ~Wp [w-(k+nk )Vb]2

Approximating [w-(k+nkO)Vb] 2 .W 2/Y2 in the denominator on the right-hand

side of Eq. (57), the reference dispersion relation (RDR) becomes

{[w-(k+nk O)Vb] 2 _W 2/Y2 ){W2_c 2 [(k-nk)k]12_W2

2 (59)
1 W c 2-2 2
- W WY [we -c(k+nkO)

C. Numerical Analysis of Dispersion Relation,

In this section, we surmmarize the results of numerical studies

of the reference dispersion relation (59) and the full dispersion

relation (57) for a broad range of dimensionless system parameters

2 2 2Cd /ck 0 , W /C k 0 and Y.
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Typical results are summarized in Fig. 2 for =2 and moderate values

of wiggler amplitude (c/ck 0 0.5) and beam density (w/c 2k0=O .4). For

such large beam density and wiggler amplitude, we note from Fig. 2(a)

that the growth rate wi=Imw obtained from the reference dispersion

relation (59) can be in substantial error for large values of (k+nk0 )/kO.

This follows since the dashed curve in Fig. 2(a) [Eq. (59)] deviates

significantly from the solid curve [Eq. (57)] for large values of

(k+nk0)/kO. On the other hand, from Fig. 2(b), both the reference

dispersion relation (59) and full dispersion relation (57) give very

similar values of the real oscillation frequency w =Rew. Moreover, ther

oscillation frequency wr is linearly proportional to (k+nk0 ) over the

entire range of unstable wavenumbers. We also note from Fig. 2(a) that

the maximum growth assumes a relatively large value, [wi max=0.3 ckO

for~i ~ 2 2 2for (c/ck 0, p w2/c k0)(0.5, 0.4).

To contrast with Fig. 2, we show in Fig. 3 a plot of normalized

growth rate wi/ck0 versus (k+nk0 )/k0 for y=2, moderate beam density

(W 2C k 20.4), and small wiggler amplitude (G /ck =0.1). In this case
p 0 c 0

the reference dispersion relation (59) and full dispersion relation

(57) give nearly identical growth rate curves. Note also from Fig. 3

that there are two unstable wavenumber bands [corresponding to two

intersection regions of the w versus k+nk curves from D L(w) = 0 and
0 n

DT M0] for (/ck 0  w2u/c 2 kO)-(0.1, 0.4). Moreover, the maximum

growth rate assumes a relatively small value, [W ] maxO.06 cko, for

the small value of wiggler amplitude chosen in Fig. 3.

Shown in Fig. 4, for y-2 and small wiggler amplitude (c /ck -0.1),

is a plot of normalized growth rate wi /ck0 versus (k+nk0 )/k0 [Eq. (57)]

2 2 2for several values of normalized beam density w p/C k0 . An important

feature of Fig. 4 is the fact that the instability bandwidth remains
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reasonably narrow for w /c k in the range 0.1 < 2/c 2k < . This is in
cotrsttoFi.p 0 -p 0-is latedvesu pkk'

contrast to Fig. 5 where wi/ck0 is plotted versus (k+nk)/k [Eq. (57)]

for y-=2, moderate wiggler amplitude (c /cko=0.5), and values of p P222 0

identical to Fig. 4. The rapid increase of instability bandwidth

with normalized wiggler amplitude G /cko is also evident from Fig. 6

where the growch rate is plotted for Y=2, w 2/C 2k 2=0.4 and several

values of c /ck0 [Eq. (57)].

We now examine the case where y is large. Figures 7-11 show

plots of normalized growth rate wi/ck0 versus (k+nk0)/k0 for

y-50 and a wide range of values of normalized wiggler amplitude

2 2 2G ck0 and beam density w p/C k0 . In all cases, we note from

Figs. 7-11 that the instability bandwidth is large. This is in contrast

with the low-y case where the bandwidth is relatively narrow for small

values of Gc/ck0 (Fig. 3). We also find (Figs. 7 and 8) that the

growth rates determined from the reference dispersion relation (59)

and the full dispersion relation (57) are different for both small

wiggler amplitude (Fig. 8) and moderate wiggler amplitude (Fig. 7).

This is in contrast with the low-y case where the reference dispersion

relation (59) gives a good estimate of the growth rate for small values

of c /ck (Fig. 3). Comparing Figs. 4 and 9, for small wiggler

amplitude (tc/cko-0 .1), it is evident that the growth rate is considerably

larger for Yarge values of y. On the other hand, comparing Figs. 5 and

10, for moderate wiggler amplitude (Cc/ck 0 .. 5), the growth rate is only

slightly larger for large values of y.
2 2 2 -2

Finally, for (k+nk0) Vb >> Wp/y , we expect the strongest interaction

between the longitudinal and transverse modes, DL ()=0 and DT (M)-0
n n-

to occur for the critical value of wavenumber given in Sec. 1, i.e., for

(k+nk o)u=(l+8b)y2k 0 (60)

Ou bYkO (60
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For 8b=I and y-50, Eq. (60) gives (k+nko)s=5000 kO. For -Y-50, we note

from Figs. 7-11 that the maximum growth rate indeed occurs for (k+nk )/k o5000.
0 0'l-

D. Influence of Beam Thermal Effects on Stabiliti Properties C

The main purpose of this paper is to develop a stability formalism

for general beam equilibrium distribution G (p ) (Secs. 2.A-3.A) and to
0Oz

study detailed stability properties for the case of a cold electron beam

with G0 (pz)=
6 (pZ-p0 ) (Secs. 3.B and 3.C). For completeness, however,

in this section we make some preliminary estimates of the influence of

beam thermal effects on stability behavior. As a simple example, we

assume a beam equilibrium distribution of the form

G0(P -2 2 ' (61)
we is t(Pz-PO) +A0

where A0 is the characteristic momentum spread about the mean momentum pO.

We further assume that the momentum spread A0 is small in comparison

with the directed momentum p0, i.e.,

A << P" (62)

Making use of Eqs. (36), (39), (61), and (62), the longitudinal dielectric

function can be approximated by

L 2 22l-2
DL (w)c (k+nk 0)  , (63)n) [w_(k+nko)Vb+ilk+nkoA0/3 ]

4

forA 0 . (63), -
2=  2 4  2 2 2-2 2 1/2

in Eq. y (m c +c p0+e B /k0 ) is the mean

energy [Eq. (48)], and Vb=PO /ym is the directed beam velocity. We

note from Eq. (63) that the fundamental longitudinal mode obtained from

DL(W)O is heavily Landau damped by thermal effects whenever
n

2 2
(k+nko) 2 0 , kp64-62 - (64)

YM Y
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It is useful to express the effective momentum spread A in

2 2 4 2 2 2j2 2 1/2
terms of an equivalent energy spread Ay. From ymc (m c +c p z+e B/k O )

we estimate Ay=poAo/m 2 c2 , or equivalently Ay/y=bA0/ymc. Equation (64)

can then be expressed as

c (k+nk) 2 (AY/ >a 2Y2 (65)

for A po2 or equivalently for Ay/y If we estimate the wave-

number of interest for the free electron laser instability by (k+nko)=

(b)0 y ko [Eq. (60)], then Eq. (65) gives

2 2

-2 ~b I...(A2/-) > 2b 2 2_ (66)
(1+ b)2 2 k0"

Equation (66) gives an estimate of the energy spread required for heavy

Landau damping of the fundamental longitudinal mode obtained from DL ()=O.n

Whenever Eq. (66) is satisfied, the waves are heavily damped (linearly)

and the free electron laser instability does not occur. Equation (66)

constitutes a very stringent requirement on energy spread. For example,

for y=5, ab= 1 and w2 /C 2 k2 0.5, Eq. (66) predicts stabilization for

(Ay/Y)2 > 5xlO- 3 , i.e., for a fractional energy spread Ay/y of about 7%.

From a practical point of view, for given values of 7 and energy

spread Ay, the reverse of the inequality in Eq. (66) can be used to

determine the range of normalized beam density wp/C k0 required for

the free electron laser instability to occur, i.e.,

2 2-2 -2(l+8b)2

> 2 2 b (67)2 22>- (YY 2
ck 0  b

Whenever Eq. (67) is satisfied, it is important to note that the inequality

in Eq. (65) will provide stabilization of the instability growth rate

for sufficiently large values of wavenumber (k+nk0 ). This implies a

natural tendency of beam thermal effects to limit the instability bandwidth,

which should be contrasted with the cold-beam stability results in Sec. 3.C.

-- ]
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4. CONCLUSIONS

In this paper, we have developed a fully self-consistent description

of the free electron laser instability based on the Vlasov-Maxwell equa-

tions. As summarized in Sec. 2, the present analysis assumes a relativis-

tic electron beam with uniform cross section propagating through a helical

A A

wiggler field = -Bcosk z - Bsinkz e Y (Eq.(2)]. Moreover, we [

consider the class of exact solutions to the Vlasov-Maxwell equations

described by fb(z,p,t) = n0 6(P x)6(P y)G(Z,pt) [Eq.(12)). A detailed

analysis of the linearized Vlasov-Maxwell equations (Secs. 2.B and 3.A)

leads to the exact matrix dispersion relation in Eq. (45). The striking

feature of Eq. (45) is that the dispersion relation is valid for arbitrary

harmonic number n. Moreover, Eq. (45) describes stability behavior for

perturbations about general beam equilibrium distribution G(p), and

no a priori restriction has been made to low beam density (as measured

by w 2/C2k2) or small wiggler amplitude (as measured by wc/ck). In Secs.p 0 u

3.B and 3.C we present a detailed numerical analysis of the full disper-

sion relation Eq.(57)] and the reference dispersion relation [Eq.(59)]

for the case of a cold electron beam described by G o(pz) = 6(pz-PO) "

Except for very modest values of wiggler amplitude, it is shown in Sec. 3.C

that the growth rate w = Imw obtained from the reference dispersion

relation can be in substantial error for large values of'(k+nk)/k.

An important feature of the stability analysis in Sec. i3.C is the fact

that the instability bandwidth increases rapidly with increasing wc/CkO .

Moreover, the instability bandwidth is considerably larger for large

values of (Figs. 7 - 11) than for moderate values of T (Figs. 2 - 6).

-............ "-
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Finally, in Sec. 3.D, we have made preliminary estimates of the influence

of beam thermal effects on stability behavior. In particular, assuming

that G0 (pz) is given by the Lorentzian distribution in Eq.(61), it is

found that waves with wavenumber (k+nk0) = (l+ b)y
2k0 are heavily Landau

damped whenever the fractional energy spread Ay/y exceeds the rather

modest value in Eq. (66).
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FIGURE CAPTIONS

Fig. 1. Intersection of dispersion curves DL (w) = 0 and DT  (W) = 0.
n n-1

Fig. 2. Plot of normalized (a) growth rate wi/koc and (b) real oscillation

frequency Wr /k c versus normalized wavenumber (k+ nk0 )/k0

for y= 2, w /ck0 = 0.5 and wp/c
2 k = 0.4. Solid curves are

obtained from full dispersion relation [Eq. (57)]. Dashed

curves are obtained from reference dispersion relation [Eq. (59)].

Fig. 3. Plot of normalized growth rate w /k c versus (k+ nko)/k for

y = 2, wc /cko = 0.1 and o2 /c k0 = 0.4 obtained from Eq. (57)

(solid curves) and Eq. (59) (dashed curves).

Fig. 4. Plot of normalized growth rate w /k c versus (k+ nko)/k 0 obtained

from Eq. (57) for y - 2, w c/ck0 = 0.1 and several values of
S2 /C 2 k2p k0

Fig. 5. Plot of normalized growth rate W 1k c versus (k+ nko)/k 0 obtained
A

from Eq. (57) for y - 2, W /ck = 0.5 and several values of
c 0

Wp k0

Fig. 6. Plot of normalized growth rate w k c versus (k+ nko)/k0 obtained

from Eq. (57) for y = 2, c2 /c2k 2 = 0.4 and several values of
p 0

W/ck I
Fig. 7. Plot of normalized growth rate w /k c versus (k+ nk0 )/k0 for

y 50, w Icko 0.5 and Wpc 2k02 - 0.4 obtained from Eq. (57)

(solid curve) and Eq. (59) (dashed curve).
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Fig. 8. Plot of normalized growth rate w i/k 0c versus (k+ nk0 )/k0

for y f 50, w ck = 0.1 and w /2 k = 0.4 obtained from

Eq. (57) (solid curve) and Eq. (59) (dashed curve).

Fig. 9. Plot of normalized growth rate w i/k 0c versus (k+ nk0 )/k0

obtained from Eq. (57) for y = 50, wc/ck0 = 0.1 and several

values of w/c 2 k2 .

Fig. 10. Plot of normalized growth rate Wi/k 0c versus (k+ nk0 )/k0

obtained from Eq. (57) for y = 50, wc/ck 0 = 0.5 and several

values of w2 /c 2kg.

Fig. 11. Plot of normalized growth rate w i/k c versus (k+ nk0 )/k0

obtained from Eq. (57) for y = 50, w2/c 2k = 0.4 and several

Avalues of w ck0

C , . ,
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